publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2025

  1. Deconfounded Warm-Start Thompson Sampling with Applications to Precision Medicine
    Prateek Jaiswal, Esmaeil Keyvanshokooh, and Junyu Cao
    Under preparation for MSOM, 2025
  2. Leveraging Offline Data from Similar Systems for Online Linear Quadratic Control
    Shivam Bajaj, Prateek Jaiswal, and Vijay Gupta
    Submitted to Transactions of Automatic Control, 2025

2024

  1. Frequentist Regret Analysis of Thompson Sampling with Fractional Posteriors for Generalized Linear Bandit
    Prateek JaiswalDebdeep Pati, Anirban Bhattacharya, and 1 more author
    Mathematics of Operations Research(1st revision invited), 2024
  2. Multistart Algorithm for Identifying All Optima of Nonconvex Stochastic Functions
    Prateek Jaiswal, and Jeffrey Larson
    Optimization Letters, May 2024

2023

  1. Generalized Regret Analysis of Thompson Sampling using Fractional Posteriors
    Prateek JaiswalDebdeep Pati, Anirban Bhattacharya, and 1 more author
    Journal of Machine Learning Research (2nd revision invited), May 2023
  2. On the Statistical Consistency of Risk-Sensitive Bayesian Decision-Making
    Prateek JaiswalHarsha Honnappa, and Vinayak Rao
    In Thirty-seventh Conference on Neural Information Processing Systems, May 2023
  3. Bayesian Joint Chance Constrained Optimization: Approximations and Statistical Consistency
    Prateek JaiswalHarsha Honnappa, and Vinayak A. Rao
    SIAM Journal on Optimization, May 2023

2020

  1. Estimating Stochastic Poisson Intensities Using Deep Latent Models
    Ruixin Wang, Prateek Jaiswal, and Harsha Honnappa
    In 2020 Winter Simulation Conference (WSC), May 2020
  2. Asymptotic Consistency of α-Rényi-Approximate Posteriors
    Prateek JaiswalVinayak Rao, and Harsha Honnappa
    J. Mach. Learn. Res., Jan 2020
  3. Variational Bayesian Methods for Stochastically Constrained System Design Problems
    Prateek JaiswalHarsha Honnappa, and Vinayak A Rao
    In Symposium on Advances in Approximate Bayesian Inference, Jan 2020
  4. Statistical inference for approximate Bayesian optimal design
    Prateek Jaiswal, and Harsha Honnappa
    In 2020 Winter Simulation Conference (WSC), Jan 2020
  5. Asymptotic consistency of loss-calibrated variational Bayes
    Prateek JaiswalHarsha Honnappa, and Vinayak A. Rao
    Stat, Feb 2020

2018

  1. Optimal Allocations for Sample Average Apporximation
    Prateek JaiswalHarsha Honnappa, and Raghu Pasupathy
    In 2018 Winter Simulation Conference (WSC), Feb 2018